

LiDAR vs. Photogrammetry: Key Differences & Use Cases

Both **LiDAR** (**Light Detection and Ranging**) and **photogrammetry** are widely used for creating 3D maps and models, but they have distinct methods, advantages, and applications.

1. Technology & Data Collection

Feature	LiDAR	Photogrammetry
How it Works	Uses laser pulses to measure distances and generate a point cloud.	Captures multiple overlapping images and reconstructs a 3D model using triangulation.
Sensors Used	LiDAR sensor with laser, GPS, and IMU.	High-resolution cameras (drone, aerial, or ground-based).
Works in Low Light?	Yes, works in total darkness or low- light conditions.	No, requires good lighting and clear visibility.

2. Accuracy & Detail

Feature	LiDAR	Photogrammetry
Accuracy	Very high (centimeter-level precision).	High, but depends on image resolution and processing.
Vegetation Penetration	Yes, penetrates through tree canopies to capture ground elevation.	No, only captures surface textures.
Texture & Color	No, raw LiDAR data lacks color unless colorized with RGB sensors.	Yes, provides realistic color and texture.

3. Cost & Efficiency

Feature	LiDAR	Photogrammetry
Cost	Expensive (LiDAR sensors and processing require specialized equipment).	More affordable (uses standard cameras and software).
Processing Time	Fast – processes point clouds directly into 3D models.	Longer – requires stitching and 3D reconstruction.
Data Density	High-density point clouds, even in complex terrain.	Lower density compared to LiDAR, but visually detailed.

4. Best Use Cases

Application	Best Technology	Why?
Forestry & Terrain Mapping	LiDAR	Can see through trees and provide bare-earth models.
Surveying & Engineering	LiDAR	High precision and works in various conditions.
Architecture & Real Estate	Photogrammetry	Provides detailed, textured 3D models.
Urban Planning & Mapping	Photogrammetry	More affordable for large-scale 3D city modeling.
Mining & Infrastructure Inspection	LiDAR	Captures precise elevations and structures.
Historical Site Documentation	Photogrammetry	Creates realistic visual representations.

Final Verdict: Which One Should You Use?

- **✓** Use LiDAR if you need precision, penetration through vegetation, or work in low-light conditions.
- **☑** Use Photogrammetry if you need cost-effective, high-resolution visuals for modeling and analysis.
- **✓ Combine Both!** Many projects use LiDAR for accuracy and photogrammetry for realistic textures, creating a powerful hybrid model.